Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 190
Filtrar
1.
Cell Rep ; 43(4): 114118, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38619966

RESUMO

Zygotic genome activation (ZGA) after fertilization enables the maternal-to-zygotic transition. However, the global view of ZGA, particularly at initiation, is incompletely understood. Here, we develop a method to capture and sequence newly synthesized RNA in early mouse embryos, providing a view of transcriptional reprogramming during ZGA. Our data demonstrate that major ZGA gene activation begins earlier than previously thought. Furthermore, we identify a set of genes activated during minor ZGA, the promoters of which show enrichment of the Obox factor motif, and find that Obox3 or Obox5 overexpression in mouse embryonic stem cells activates ZGA genes. Notably, the expression of Obox factors is severely impaired in somatic cell nuclear transfer (SCNT) embryos, and restoration of Obox3 expression corrects the ZGA profile and greatly improves SCNT embryo development. Hence, our study reveals dynamic transcriptional reprogramming during ZGA and underscores the crucial role of Obox3 in facilitating totipotency acquisition.


Assuntos
Embrião de Mamíferos , Zigoto , Animais , Camundongos , Reprogramação Celular , Embrião de Mamíferos/metabolismo , Desenvolvimento Embrionário/genética , Regulação da Expressão Gênica no Desenvolvimento , Genoma , Proteínas de Homeodomínio/metabolismo , Proteínas de Homeodomínio/genética , Células-Tronco Embrionárias Murinas/metabolismo , RNA/metabolismo , RNA/genética , Transcrição Gênica , Zigoto/metabolismo
2.
J Reprod Dev ; 70(2): i-iv, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38569840
3.
iScience ; 26(11): 108177, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-38107876

RESUMO

Mammalian embryos differentiate into the inner cell mass (ICM) and trophectoderm at the 8-16 cell stage. The ICM forms a single cluster that develops into a single fetus. However, the factors that determine differentiation and single cluster formation are unknown. Here we investigated whether embryos could develop normally without gravity. As the embryos cannot be handled by an untrained astronaut, a new device was developed for this purpose. Using this device, two-cell frozen mouse embryos launched to the International Space Station were thawed and cultured by the astronauts under microgravity for 4 days. The embryos cultured under microgravity conditions developed into blastocysts with normal cell numbers, ICM, trophectoderm, and gene expression profiles similar to those cultured under artificial-1 g control on the International Space Station and ground-1 g control, which clearly demonstrated that gravity had no significant effect on the blastocyst formation and initial differentiation of mammalian embryos.

4.
Sci Rep ; 13(1): 19893, 2023 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963931

RESUMO

Time-lapse observation is a popular method for analyzing mammalian preimplantation embryos, but it often requires expensive equipment and skilled techniques. We previously developed a simply and costly embryo-culture system in a sealed tube that does not require a CO2 incubator. In the present study, we developed a new time-lapse observation system using our previous culture method and a glass capillary. Zygotes were placed in a glass capillary and sunk in oil for observation under a stereomicroscope. Warming the capillary using a thermoplate enabled most of the zygotes to develop into blastocysts and produce healthy offspring. This time-lapse observation system captured images every 30 min for up to 5 days, which confirmed that the developmental speed and quality of the embryos were not affected, even with fluorescence. Overall, this new system is a simple time-lapse observation method for preimplantation embryos that does not require dedicated machines and advanced techniques.


Assuntos
Blastocisto , Desenvolvimento Embrionário , Animais , Camundongos , Imagem com Lapso de Tempo , Zigoto , Embrião de Mamíferos , Técnicas de Cultura Embrionária , Mamíferos
5.
Biochem Biophys Res Commun ; 680: 119-126, 2023 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-37738901

RESUMO

Round spermatid injection (ROSI) is the last resort and recourse for men with nonobstructive azoospermia to become biological fathers of their children. However, the ROSI-derived offspring rate is lower than intracytoplasmic sperm injection (ICSI) in mice (20% vs. 60%). This low success rate has hindered the spread of ROSI in ART (Assisted Reproductive Technology). However, the cause of the ROSI-zygote-derived low offspring rate is currently unknown. In the previous studies, we reported that H3K9me3 and H3K27me3 exhibited ectopic localizations in male pronuclei (mPN) of ROSI-zygotes, suggesting that the carried over histone to zygotes conveys epigenetic information. In this study, we analyzed other histone modifications to explore unknown abnormalities. H3K36me3 showed an increased methylation state compared to ICSI-derived embryos but not for H3K4me3. Abnormal H3K36me3 was corrected until 2-cell stage embryos, suggesting a long window of reprogramming ability in ROSI-embryos. Treatment with TSA of ROSI-zygotes, which was reported to be capable of correcting ectopic DNA methylation in ROSI-zygotes, caused abnormalities of H3K36me3 in male and female PN (fPN) of the zygotes. In contrast, round spermatid TSA treatment before ROSI, which was reported to improve the preimplantation development of ROSI-zygotes, showed beneficial effects without toxicity in fPN. Therefore, the results suggest that TSA has some negative effects, but overall, it is effective in the correction of epigenetic abnormalities in ROSI-zygotes. When attempting to correct epigenetic abnormalities, attention should be paid to epigenomes not only in male but also in female pronuclei.


Assuntos
Histonas , Espermátides , Humanos , Criança , Masculino , Feminino , Camundongos , Animais , Espermátides/metabolismo , Histonas/metabolismo , Oócitos/metabolismo , Sêmen/metabolismo , Blastocisto/metabolismo , Metilação de DNA
6.
Nucleic Acids Res ; 51(13): 6668-6683, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37283086

RESUMO

Sperm chromatin retains small amounts of histones, and chromatin states of sperm mirror gene expression programs of the next generation. However, it remains largely unknown how paternal epigenetic information is transmitted through sperm chromatin. Here, we present a novel mouse model of paternal epigenetic inheritance, in which deposition of Polycomb repressive complex 2 (PRC2) mediated-repressive H3K27me3 is attenuated in the paternal germline. By applying modified methods of assisted reproductive technology using testicular sperm, we rescued infertility of mice missing Polycomb protein SCML2, which regulates germline gene expression by establishing H3K27me3 on bivalent promoters with other active marks H3K4me2/3. We profiled epigenomic states (H3K27me3 and H3K4me3) of testicular sperm and epididymal sperm, demonstrating that the epididymal pattern of the sperm epigenome is already established in testicular sperm and that SCML2 is required for this process. In F1 males of X-linked Scml2-knockout mice, which have a wild-type genotype, gene expression is dysregulated in the male germline during spermiogenesis. These dysregulated genes are targets of SCML2-mediated H3K27me3 in F0 sperm. Further, dysregulation of gene expression was observed in the mutant-derived wild-type F1 preimplantation embryos. Together, we present functional evidence that the classic epigenetic regulator Polycomb mediates paternal epigenetic inheritance through sperm chromatin.


Assuntos
Cromatina , Epigênese Genética , Animais , Masculino , Camundongos , Cromatina/genética , Epigenômica , Histonas/genética , Histonas/metabolismo , Camundongos Knockout , Proteínas do Grupo Polycomb/genética , Proteínas do Grupo Polycomb/metabolismo , Sêmen/metabolismo , Espermatozoides/metabolismo
7.
J Reprod Dev ; 69(4): 198-205, 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37357399

RESUMO

Although freeze-drying sperm can save space, reduce maintenance costs, and facilitate the transportation of genetic samples, the current method requires breakable, custom-made, and expensive glass ampoules. In the present study, we developed a simple and economical method for collecting freeze-dried (FD) sperm using commercially available plastic microtubes. Mouse epididymal sperm suspensions were placed in 1.5 ml polypropylene tubes, frozen in liquid nitrogen, and dried in an acrylic freeze-drying chamber, after which they were closed under a vacuum. The drying duration did not differ between the microtube and glass ampoule methods (control); however, the sperm recovery rate was higher using the microtube method, and the physical damage to the sperm after rehydration was also reduced. Intracytoplasmic sperm injection (ICSI) using FD sperm stored in microtubes at -30°C yielded healthy offspring without reducing the success rate, even after 9 months of storage. Air infiltration into all microtubes stored at room temperature (RT) within 2 weeks of storage caused a drastic decrease in the fertilization rate of FD sperm; underwater storage did not prevent air infiltration. RT storage of FD sperm in microtubes for 1 week resulted in healthy offspring after ICSI (5-18%), but the addition of silica gel or CaCl2 did not improve the success rate. Our novel microtube method is currently the simplest and most effective method for treating FD sperm, contributing to the development of alternative low-cost approaches for preserving and transporting genetic resources.


Assuntos
Plásticos , Preservação do Sêmen , Animais , Camundongos , Masculino , Sêmen , Liofilização/métodos , Espermatozoides , Injeções de Esperma Intracitoplásmicas/métodos , Preservação do Sêmen/veterinária , Preservação do Sêmen/métodos
8.
Life (Basel) ; 13(4)2023 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-37109509

RESUMO

During mammalian fertilization, repetitive rises of intracellular calcium called calcium oscillations are required for full activation of oocytes. Therefore, oocytes such as round spermatid injected or somatic cell nuclear transferred require additional artificial activation which mimics the calcium oscillations. It is well recognized that sperm specific phospholipase C (PLCζ) is a strong candidate as the sperm factor which can induce calcium oscillations and, at least in mammals, the genetic mutation of PLCζ in human causes male infertility due to the lack of calcium oscillations in the oocytes. Recent studies showed that the sperm lacking PLCζ (Plcz1-/-) still could induce rise(s) of intracellular calcium in the oocytes after IVF but not intracytoplasmic sperm injection (ICSI). In the ICSI oocytes, no pronuclear formation or development to the two-cell stage was observed. However, it is still unclear whether additional activation treatment can rescue the low developmental ability of Plcz1-/--sperm-derived oocytes after ICSI. In this study, we examined whether oocytes injected with a Plcz1-/- sperm can develop to term by additional artificial activation. In oocytes injected a Plcz1-/- sperm and Plcz1-/- and eCS (another candidate of the sperm factor) double knockout sperm (Plcz1-/-eCS-/-), the rates of pronuclear formation were very low (2.0 ± 2.3% and 6.1 ± 3.7%, respectively) compared to control (92.1 ± 2.6%). However, these rates were dramatically improved by additional procedures of PLCζ-mRNA injection or SrCl2 treatment (Plcz1-/- sperm + PLCζ mRNA, Plcz1-/- sperm + SrCl2 and Plcz1-/-eCS-/- sperm + PLCζ mRNA; 64.2 ± 10.8%, 89.2 ± 2.4% and 72.6 ± 5.4%, respectively). Most of the oocytes were developed to the two-cell stage. After embryo transfer, healthy pups were obtained in all these groups (Plcz1-/- sperm + PLCζ mRNA:10.0 ± 2.8%, Plcz1-/- sperm + SrCl2:4.0 ± 4.3% and Plcz1-/-eCS-/- sperm + PLCζ mRNA: 10.0 ± 5.7%). The rate in Plcz1-/- sperm + SrCl2 group was significantly lower than that in control (26.0 ± 2.4%). Taken together, our present results show that additional activation treatment such as SrCl2 and PLCζ mRNA can fully support to develop to term even in oocyte injected Plcz1-/- sperm. In addition, PLCζ-induced oocyte activation is more suitable for successful development to term compared to that such as phenomenon induced by SrCl2. These findings will contribute to improvement for male-dependent human infertility and reproductive technologies in other mammalian species.

9.
Methods Mol Biol ; 2647: 151-168, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37041333

RESUMO

Somatic cell nuclear transfer (SCNT) technology has become a useful tool for animal cloning, gene manipulation, and genomic reprogramming research. However, the standard mouse SCNT protocol remains expensive, labor-intensive, and requires hard work for many hours. Therefore, we have been trying to reduce the cost and simplify the mouse SCNT protocol. This chapter describes the methods to use low-cost mouse strains and steps from the mouse cloning procedure. Although this modified SCNT protocol will not improve the success rate of mouse cloning, it is a cheaper, simpler, and less tiring method that allows us to perform more experiments and obtain more offspring with the same working time as the standard SCNT protocol.


Assuntos
Clonagem de Organismos , Técnicas de Transferência Nuclear , Camundongos , Animais , Clonagem de Organismos/métodos , Oócitos , Genoma , Clonagem Molecular
10.
J Reprod Dev ; 69(1): 48-52, 2023 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-36529517

RESUMO

We examined various methods to enhance the accessibility of intracytoplasmic sperm injection (ICSI) technology to more users by making the technique easier, more efficient, and practical. First, the methods for artificially removing the mouse sperm tail were evaluated. Trypsin treatment was found to efficiently remove the sperm tails. The resultant sperm cells had a lower oocyte activation capacity; however, the use of activated oocytes resulted in the same fecundity as that of fresh, untreated sperm. Pre-activated oocytes were more resistant to physical damage, showed higher survival rates, and required less time per injection. Testing this method in rats yielded similar results, although the oocyte activation method was different. Remarkably, this method resulted in higher birth rates of rat progeny than with conventional methods of rat ICSI. Our method thereby streamlines mouse and rat ICSI, making it more accessible to laboratories across many disciplines.


Assuntos
Injeções de Esperma Intracitoplásmicas , Cauda do Espermatozoide , Camundongos , Masculino , Ratos , Animais , Injeções de Esperma Intracitoplásmicas/métodos , Tripsina , Sêmen , Espermatozoides/fisiologia , Oócitos
11.
Sci Rep ; 12(1): 18430, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319672

RESUMO

Mouse cloning by nuclear transfer using freeze-drying (FD) somatic cells is now possible, but the success rate is significantly lower than that of FD spermatozoa. Because spermatozoa, unlike somatic cells, are haploid cells with hardened nuclei due to protamine, the factors responsible for their tolerance to FD treatment remain unclear. In this study, we attempt to produce offspring from FD spermatid, a haploid sperm progenitor cell whose nuclei, like somatic cells, have not yet been replaced by protamine. We developed a method for collecting FD spermatids from testicular suspension. Despite the significantly lower success rate than that of FD spermatozoa, healthy offspring were obtained when FD spermatids were injected into oocytes. Offspring were also obtained from FD spermatids derived from immature male mice that had not yet produced spermatozoa. These results suggest that nuclear protaminization, rather than haploid nuclei, is one of the key processes responsible for tolerance to FD treatment.


Assuntos
Preservação do Sêmen , Espermátides , Masculino , Camundongos , Animais , Preservação do Sêmen/métodos , Zigoto , Sêmen , Espermatozoides , Liofilização/métodos , Oócitos , Protaminas
12.
PLoS One ; 17(10): e0270781, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36206235

RESUMO

Whether mammalian embryos develop normally under microgravity remains to be determined. However, embryos are too small to be handled by inexperienced astronauts who orbit Earth on the International Space Station (ISS). Here we describe the development of a new device that allows astronauts to thaw and culture frozen mouse 2-cell embryos on the ISS without directly contacting the embryos. First, we developed several new devices using a hollow fiber tube that allows thawing embryo without practice and observations of embryonic development. The recovery rate of embryos was over 90%, and its developmental rate to the blastocyst were over 80%. However, the general vitrification method requires liquid nitrogen, which is not available on the ISS. Therefore, we developed another new device, Embryo Thawing and Culturing unit (ETC) employing a high osmolarity vitrification method, which preserves frozen embryos at -80°C for several months. Embryos flushed out of the ETC during thawing and washing were protected using a mesh sheet. Although the recovery rate of embryos after thawing were not high (24%-78%) and embryonic development in ETC could not be observed, thawed embryos formed blastocysts after 4 days of culture (29%-100%) without direct contact. Thus, this ETC could be used for untrained astronauts to thaw and culture frozen embryos on the ISS. In addition, this ETC will be an important advance in fields such as clinical infertility and animal biotechnology when recovery rate of embryos were improved nearly 100%.


Assuntos
Blastocisto , Vitrificação , Animais , Criopreservação/métodos , Embrião de Mamíferos , Feminino , Congelamento , Mamíferos , Camundongos , Nitrogênio , Gravidez
13.
Development ; 149(18)2022 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-35993297

RESUMO

Round spermatid injection (ROSI) results in a lower birth rate than intracytoplasmic sperm injection, which has hampered its clinical application. Inefficient development of ROSI embryos has been attributed to epigenetic abnormalities. However, the chromatin-based mechanism that underpins the low birth rate in ROSI remains to be determined. Here, we show that a repressive histone mark, H3K27me3, persists from mouse round spermatids into zygotes in ROSI and that round spermatid-derived H3K27me3 is associated with less accessible chromatin and impaired gene expression in ROSI embryos. These loci are initially marked by H3K27me3 but undergo histone modification remodelling in spermiogenesis, resulting in reduced H3K27me3 in normal spermatozoa. Therefore, the absence of epigenetic remodelling, presumably mediated by histone turnover during spermiogenesis, leads to dysregulation of chromatin accessibility and transcription in ROSI embryos. Thus, our results unveil a molecular logic, in which chromatin states in round spermatids impinge on chromatin accessibility and transcription in ROSI embryos, highlighting the importance of epigenetic remodelling during spermiogenesis in successful reproduction.


Assuntos
Histonas , Espermátides , Animais , Cromatina/genética , Cromatina/metabolismo , Histonas/genética , Histonas/metabolismo , Masculino , Camundongos , Oócitos/metabolismo , Herança Paterna , Sêmen/metabolismo , Espermátides/metabolismo
14.
Nat Commun ; 13(1): 3666, 2022 07 05.
Artigo em Inglês | MEDLINE | ID: mdl-35790715

RESUMO

Maintaining biodiversity is an essential task, but storing germ cells as genetic resources using liquid nitrogen is difficult, expensive, and easily disrupted during disasters. Our aim is to generate cloned mice from freeze-dried somatic cell nuclei, preserved at -30 °C for up to 9 months after freeze drying treatment. All somatic cells died after freeze drying, and nucleic DNA damage significantly increased. However, after nuclear transfer, we produced cloned blastocysts from freeze-dried somatic cells, and established nuclear transfer embryonic stem cell lines. Using these cells as nuclear donors for re-cloning, we obtained healthy cloned female and male mice with a success rate of 0.2-5.4%. Here, we show that freeze-dried somatic cells can produce healthy, fertile clones, suggesting that this technique may be important for the establishment of alternative, cheaper, and safer liquid nitrogen-free bio-banking solutions.


Assuntos
Clonagem de Organismos , Técnicas de Transferência Nuclear , Animais , Blastocisto , Linhagem Celular , Clonagem de Organismos/métodos , Feminino , Liofilização/métodos , Masculino , Camundongos
15.
Commun Biol ; 5(1): 699, 2022 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-35835981

RESUMO

The underlying mechanism for parental asymmetric chromatin dynamics is still unclear. To reveal this, we investigate chromatin dynamics in parthenogenetic, androgenic, and several types of male germ cells-fertilized zygotes. Here we illustrate that parental conflicting role mediates the regulation of chromatin dynamics. Sperm reduces chromatin dynamics in both parental pronuclei (PNs). During spermiogenesis, male germ cells acquire this reducing ability and its resistance. On the other hand, oocytes can increase chromatin dynamics. Notably, the oocytes-derived chromatin dynamics enhancing ability is dominant for the sperm-derived opposing one. This maternal enhancing ability is competed between parental pronuclei. Delayed fertilization timing is critical for this competition and compromises parental asymmetric chromatin dynamics and zygotic transcription. Together, parental competition for the maternal factor enhancing chromatin dynamics is a determinant to establish parental asymmetry, and paternal repressive effects have supporting roles to enhance asymmetry.


Assuntos
Cromatina , Zigoto , Animais , Núcleo Celular , Cromatina/genética , Histonas , Masculino , Camundongos , Sêmen
16.
J Reprod Dev ; 68(4): 262-270, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35676029

RESUMO

Freeze-dried sperm (FD sperm) are of great value because they can be stored at room temperature for long periods of time, However, the birth rate of offspring derived from FD sperm is low and the step in the freeze-drying process particularly responsible for low offspring production remains unknown. In this study, we determined whether the drying process was responsible for the low success rate of offspring by producing vacuum-dried sperm (VD sperm), using mouse spermatozoa dried in a vacuum without being frozen. Transfer of embryos fertilized with VD sperm to recipients resulted in the production of several successful offspring. However, the success rate was slightly lower than that of FD sperm. The volume, temperature, and viscosity of the medium were optimized to improve the birth rate. The results obtained from a comet assay indicated that decreasing the drying rate reduced the extent of DNA damage in VD sperm. Furthermore, even though the rate of blastocyst formation increased upon fertilization with VD sperm, full-term development was not improved. Analysis of chromosomal damage at the two-cell stage through an abnormal chromosome segregation (ACS) assay revealed that reduction in the drying rate failed to prevent chromosomal damage. These results indicate that the lower birth rate of offspring from FD sperm may result from the drying process rather than the freezing process.


Assuntos
Preservação do Sêmen , Injeções de Esperma Intracitoplásmicas , Animais , DNA , Desenvolvimento Embrionário , Liofilização/métodos , Masculino , Camundongos , Oócitos , Sêmen , Preservação do Sêmen/métodos , Espermatozoides , Vácuo
17.
Genome Res ; 32(5): 945-955, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35534232

RESUMO

De novo mutations accumulate with zygotic cell divisions. However, the occurrence of these mutations and the way they are inherited by somatic cells and germ cells remain unclear. Here, we present a novel method to reconstruct cell lineages. We identified mosaic mutations in mice using deep whole-genome sequencing and reconstructed embryonic cell lineages based on the variant allele frequencies of the mutations. The reconstructed trees were confirmed using nuclear transfer experiments and the genotyping of approximately 50 offspring of each tree. The most detailed tree had 32 terminal nodes and showed cell divisions from the fertilized egg to germ cell- and somatic cell-specific lineages, indicating at least five independent cell lineages that would be selected as founders of the primordial germ cells. The contributions of each lineage to germ cells and offspring varied widely. At the emergence of the germ cell-specific lineages, 10-15 embryonic mutations had accumulated, suggesting that the pregastrulation mutation rate is 1.0 mutation per mitosis. Subsequent mutation rates were 0.7 for germ cells and 13.2 for tail fibroblasts. Our results show a new framework to assess embryonic lineages; further, we suggest an evolutionary strategy for preserving heterogeneity owing to postzygotic mutations in offspring.


Assuntos
Células Germinativas , Taxa de Mutação , Animais , Linhagem da Célula/genética , Camundongos , Mutação , Zigoto
18.
J Reprod Dev ; 68(2): 118-124, 2022 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-34980785

RESUMO

Mammalian embryos are most commonly cryopreserved in liquid nitrogen; however, liquid nitrogen is not available in special environments, such as the International Space Station (ISS), and vitrified embryos must be stored at -80°C. Recently, the high osmolarity vitrification (HOV) method was developed to cryopreserve mouse 2-cell stage embryos at -80°C; however, the appropriate embryo is currently unknown. In this study, we compared the vitrification resistance of in vivo-derived, in vitro fertilization (IVF)-derived, and intracytoplasmic sperm injection (ICSI)-derived mouse 2-cell embryos against cryopreservation at -80°C. The ICSI embryos had lower survival rates after warming and significantly lower developmental rates than the in vivo and IVF embryos. Further, IVF embryos had a lower survival rate after warming, but a similar rate to the in vivo embryos to full-term development. This result was confirmed by simultaneous vitrification of in vivo and IVF embryos in the same cryotube using identifiable green fluorescent protein-expressing embryos. We also evaluated the collection timing of the in vivo embryos from the oviduct and found that late 2-cell embryos had higher survival and developmental rates to full-term than early 2-cell embryos. Some early 2-cell embryos remained in the S-phase, whereas most late 2-cell embryos were in the G2-phase, which may have affected the tolerance to embryo vitrification. In conclusion, when embryos must be cryopreserved under restricted conditions, such as the ISS, in vivo fertilized embryos collected at the late 2-cell stage without long culture should be employed.


Assuntos
Injeções de Esperma Intracitoplásmicas , Vitrificação , Animais , Criopreservação/métodos , Embrião de Mamíferos , Fertilização in vitro/métodos , Mamíferos , Camundongos , Concentração Osmolar , Injeções de Esperma Intracitoplásmicas/métodos
19.
PLoS One ; 16(12): e0260645, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34941870

RESUMO

Conventional in vitro culture and manipulation of mouse embryos require a CO2 incubator, which not only increases the cost of performing experiments but also hampers the transport of embryos to the other laboratories. In this study, we established and tested a new CO2 incubator-free embryo culture system and transported embryos using this system. Using an Anaero pouch, which is a CO2 gas-generating agent, to increase the CO2 partial pressure of CZB medium to 4%-5%, 2-cell embryos were cultured to the blastocyst stage in a sealed tube without a CO2 incubator at 37°C. Further, the developmental rate to blastocyst and full-term development after embryo transfer were comparable with those of usual culture method using a CO2 incubator (blastocyst rate: 97% versus 95%, respectively; offspring rate: 30% versus 35%, respectively). Furthermore, using a thermal bottle, embryos were reliably cultured using this system for up to 2 days at room temperature, and live offspring were obtained from embryos transported in this simple and very low-cost manner without reducing the offspring rate (thermal bottle: 26.2% versus CO2 incubator: 34.3%). This study demonstrates that CO2 incubators are not essential for embryo culture and transportation and that this system provides a useful, low-cost alternative for mouse embryo culture and manipulation.


Assuntos
Blastocisto/fisiologia , Dióxido de Carbono/administração & dosagem , Técnicas de Cultura Embrionária/métodos , Transferência Embrionária/métodos , Embrião de Mamíferos/citologia , Animais , Meios de Cultura , Técnicas de Cultura/métodos , Embrião de Mamíferos/fisiologia , Feminino , Fertilização in vitro , Incubadoras/estatística & dados numéricos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR
20.
STAR Protoc ; 2(4): 100933, 2021 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-34806046

RESUMO

The preservation of mammalian freeze-dried (FD) spermatozoa is commonly performed using small glass ampules; however, they are bulky and breakable. In this study, we present a protocol to prepare and preserve mouse FD sperm using thin plastic sheets. This approach allows storing thousands of mouse strains in a card folder. We can also send the FD sperm domestically using a postcard without any extra equipment. For complete details on the use and execution of this protocol, please refer to Ito et al. (2021).


Assuntos
Liofilização/métodos , Preservação do Sêmen/métodos , Espermatozoides , Animais , Masculino , Camundongos , Espermatozoides/citologia , Espermatozoides/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA